
P A L O A LT O N E T W O R K S : T r a p s D a t a s h e e t

Traps: Advanced Endpoint Protection

Palo Alto Networks® Traps provides Advanced Endpoint
Protection that prevents sophisticated vulnerability exploits
and malware-driven attacks. Traps accomplishes this
through a highly scalable, lightweight agent that uses an
innovative new approach for defeating attacks without
requiring any prior knowledge of the threat itself. By doing
so, Traps provides organizations with a powerful tool for
protecting endpoints from virtually every targeted attack.

Palo Alto Networks Traps takes a unique approach to endpoint security,
designed to provide complete security protection for the endpoint, including
the prevention of both conventional attacks as well as advanced and targeted
attacks that traditional solutions cannot prevent.

Instead of looking to identify the millions of individual attacks themselves,
or detect malicious behavior that may be undetectable, Traps focuses on the
core techniques that every attacker must link together in order to execute their
attack. By setting up a series of exploit ‘traps’ into the process to mitigate these
techniques, Traps can thwart the attack immediately before any malicious
activity can successfully run.

This unique approach allows Traps to be agnostic to application, protecting all
applications, including those developed by 3rd parties.

Exploit prevention
The actual process of exploiting a vulnerability on an endpoint requires execution
of multiple advanced techniques operating in sequence. For example, in a typical
attack the attacker will attempt to gain control of a system by !rst attempting to
corrupt or bypass memory allocation or handlers. By using memory-corruption
techniques such as buffer over"ow or heap corruption the hacker can utilize
weaknesses or vulnerabilities within the target software to execute their speci!c
code. Once an attacker is able to execute custom code, he can download
malware or completely control the system to his full advantage.

Regardless of the attack or its complexity—in order for the attack to be successful
the attacker must execute a series exploit techniques in sequence. Some attacks
may involve more steps, some may involve less, in all cases at least two or three
techniques must be used in order to exploit the targeted endpoint.

How Exploit Prevention works
Traps employs a series of exploit prevention modules aimed at mitigating and
blocking the different exploit techniques available to attackers. These modules
operate like “traps”, injected into the user processes and designed to trigger
and block the attacker’s exploit technique as soon as it’s attempted. Whenever
an application is opened Traps seamlessly injects prevention modules into the
process as transparent, static “traps”. Once a module is injected into the process,
that process is then protected from any exploit. If an exploit attempt is made
using one of the few available techniques, Traps will immediately block that

TRAPS:
Prevents all vulnerability exploits
Prevents all malware-driven attacks

Provides Immediate forensics of
prevented attacks

Is scalable, lightweight and user
friendly

Integrates with the network and
cloud security

P A L O A LT O N E T W O R K S : T r a p s D a t a s h e e t

PAGE 2

technique, terminate the process, and notify both the user and the
admin that an attack was prevented. In addition, Traps will collect
detailed forensics and report that information to the Endpoint
Security Manager (ESM). Due to the chain-like nature of an exploit,
preventing just one technique in the chain is all that is needed in
order to block the entire attack.

If no attempt is made it’s business as usual for that user and process.
Given the minimal resource utilization of Traps, there will be no
user experience implications of the preventative measures that were
deployed behind the scenes.

By focusing on the exploit techniques and not the attack itself, Traps
can prevent the attack without prior knowledge of the vulnerability,
regardless of patches in place, and without signatures or software
updates. It’s important to note that Traps isn’t scanning or monitoring
for malicious activity, so there’s a massive scalability bene!t to this
approach as very little CPU and memory are used.

Traps exploitation prevention is designed to prevent attacks on
program vulnerabilities based on memory corruption or logic "aws.
Examples of attacks that Traps can prevent, include:

• Memory corruption

• Java code from running in browsers, under certain conditions

• Executables from spawning child processes, under certain
conditions

• Dynamic-link library (DLL) hijacking (replacing a legitimate
DLL with a malicious one of the same name)

• Hijacking program control "ow

• Inserting malicious code as an exception handler

Malware Prevention
Malicious executable !les, known as malware, are often disguised
as or embedded in non-malicious !les. They can harm computers by
attempting to gain control, gather sensitive information, or disrupt
the normal operations of the system.

While advanced attackers are increasingly exploiting software
vulnerabilities, attacks are also advancing with unknown or

manipulated Malware (Executable !les) and because these types
of attacks generally don’t have known signatures, known strings
or previously known behavior, traditional endpoint security
approaches are unable to prevent them.

In order to effectively prevent the execution of malware on the
endpoint, Traps employs the following three components of
malware prevention:

1. Policy-Based Restrictions: Policy restrictions provide organizations
with the ability to set up policies restricting speci!c execution
scenarios, and not the whitelisting or blacklisting of speci!c !les.
The attack surface can be greatly reduced by simply controlling
the source of !le installation. When a user attempts to open the
executable, Traps will evaluate the execution restriction rules that
may apply. Examples of common policy based restrictions;

• Running executables from certain folders

• Running executables from external media

• Processes spawning child processes

• Java processes run from browsers

• Running unsigned processes

• Thread Injection

2. Wild!re™ Inspection: For execution of !les that are not limited to
the policy restrictions set in place, Traps Endpoint Security Manager
will query the WildFire threat cloud with a hash, to determine if
the !le is malicious, benign, or unknown within the global threat
community. If WildFire con!rms that a !le is known malware,
Traps will prevent the !le from executing and will notify the ESM.

3. Malware Techniques Mitigation: Similar to Exploit techniques,

Process is protected
as exploit attempt is

trapped.

Traps seamlessly
injected into
processes.

Attack is blocked
before any successful

malicious activity.

Traps triggers
immediate actions.

Safe!

Reported
to ESM

Forensic data
is collected

Process is
terminated

User/admin is
notified

CPU
<0.1%

How it works: Exploit prevention.

P A L O A LT O N E T W O R K S : T r a p s D a t a s h e e t

PAGE 3

attackers utilize common, and identi!able techniques when trying
to deploy their malware. In the event that the !le execution is
not restricted by policy or has not been matched by hash to a
known attack in the Wild!re threat cloud, Traps will implement
technique-based mitigations that limit or block; child processes,
Java processes initiated in web browsers, remote thread and
process creation, and unsigned processes execution—in order to
prevent the attack entirely from executing.

Forensics

Whenever Traps prevents an attack, real-time forensic details
about the event will be collected about; the !le, what occurred, the
memory state when it was prevented, etc. and report the logged
information to the Endpoint Security Manager (ESM). Despite the
fact that the attack was prevented, there is still a great amount of
intelligence that can be gathered. By capturing all the forensics of
the attempted attack, organizations can apply proactive defenses to
other endpoints that may not be protected.

Traps Architecture
Traps provides a 3-tier management structure consisting of the
Endpoint Security Manager, Endpoint Connection Server, and
endpoint agents. This model allows for massive horizontal
scalability while still maintaining a centralized con!guration
and database for policies, forensics, etc.

Endpoint Security Manager
The Endpoint Security Manager provides an administrative
dashboard for managing security events, endpoint health, and
policy rules. The ESM also handles the communication to
WildFire when hashes are sent for inspection. The ESMs
all-in-one management center covers:

• Con!guration management
• Logging and DB query
• Admin dashboard and security overview
• Forensics captures
• Integration con!guration

The Endpoint Security Manager includes a centralized database

that stores administrative information, security policy rules,
endpoint history, and additional information about security
events. The database is managed over the MS-SQL platform.

The Endpoint Security Manager can write logs to an external
logging platform, such as security information and event
management (SIEM), Service Organization Controls (SOCs),
or syslog, in addition to storing its logs internally. Specifying
an external logging platform allows an aggregated view of logs
from all Endpoint Servers.

Endpoint Server
The Endpoint Server regularly distributes the security policy to all
agents and manages all the information related to security events.

• Traps Status – Noti!cations and health pages in the Endpoint
Security Manager display the status for each endpoint.

• Noti!cations – Traps agent sends noti!cation messages about
changes in the agent, such as the start or stop of a service, to
the Endpoint Server.

• Prevention reports – Traps reports all of the information
pertaining to an event, to the Endpoint Server in real-time.

User tries to open
executable file.

Policy-based
restrictions applied.

HASH checked
against WildFire.

Malware technique
prevention employed.

File is
allowed to

execute

Reported
to ESM

Safe!

Syslog

SCCM
ESM

Database - Designated or
integration with existing.

Connection
server

Connection
server

Connection
server

PCs, servers, VMs, VDI, Citrix session, thin client, embedded

How it works: Malware prevention.

P A L O A LT O N E T W O R K S : T r a p s D a t a s h e e t

4401 Great America Parkway
Santa Clara, CA 95054

Main: +1.408.753.4000
Sales: +1.866.320.4788
Support: +1.866.898.9087

www.paloaltonetworks.com

Copyright ©2014, Palo Alto Networks, Inc. All rights reserved. Palo Alto Networks,
the Palo Alto Networks Logo, PAN-OS, App-ID and Panorama are trademarks of
Palo Alto Networks, Inc. All specifications are subject to change without notice.
Palo Alto Networks assumes no responsibility for any inaccuracies in this document
or for any obligation to update information in this document. Palo Alto Networks
reserves the right to change, modify, transfer, or otherwise revise this publication
without notice. PAN_DS_TRAPS_100814

Specifications
With the unique approach taken, Traps operates in a somewhat
static capacity and doesn’t scan for malicious activity our resource
utilization is very low:

TRAPS AGENT:

• CPU – Average utilization of 0.1%
• Memory Consumption – 25 MB
• Disk Space – 15 MB

Coverage & Platform Support
Traps protects unpatched systems, requires no hardware and is supported across any platform that runs Microsoft Window; desktops,
servers, industrial control systems, terminals, VDI, VMs and embedded systems etc.

Traps currently supports the following Windows-based
operating systems:

WORKSTATIONS

• Windows XP SP3
• Windows 7
• Windows 8.1
• Windows Vista SP1

SERVERS

• Windows Server 2003
• Windows Server 2008 (+R2)
• Windows Server 2012 (+R2)

